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ANALYSIS OF TURBULENT HEAT TRANSFER, MASS TRANSFER, AND FRICTION IN SMOOTH

TUBES AT HIGH PRANDTL AND SCHMIDT NUMBERS 1

By ROBERT G. DEISSLER

SUMMARY

The expression.for eddy diffusivity from a previous analysis

was modified in order to account .for the effect of kinematic

viscosity on the turbulence in the region close to a wall. By

using the modified expression, good agreement was obtained
between predicted and experimental results for heat aad mass

transfer at Prandtl and Schmidt numbers between 0.5 and 3000.
The ej_'ects of length-to-diameter ratio and of variable viscosity

were also investigated for a wide range of Prandtl numbers.

INTRODUCTION

Most of the existing anMyses for turbulent heat and mass

transfer are adequate only for Prandtl and Schmidt numbers
on the order of 1 or less. For instance, the analysis given in

reference 1, Mthough adequate for gases, gives heat- and
mass-transfer coefficients for liquids at high Prandtl or

Schmidt numbers that are higher than those obtained

experimentally. The difference between the experimental
values and the values obtained by the method in reference ]

increases as the Prandtl or Schmidt number increases.
Coefficients obtained from the yon Kfirm_n analysis (ref. 2)

at high Prandtl or Schmidt numbers are lower than the

experimental values. Rannie's analysis (ref. 3) gives
coefficients which are in somewhat better agreement with

the data than either of these analyses, but the coefficients

are again inaccurate at very high Prandtl or Schmidt num-
bers. The analysis of reference 4 agrees with data at
Prandtl or Schmidt numbers of 1 and at very high Prandtl or

Schmidt numbers, but the coefficients are somewhat low at
intermediate values of these numbers. In reference 5,

which was published since the present investigation was

initiated, good agreement was obtained with mass-transfer
data for Prandtl and Schmidt numbers between 0.5 and 3000

by introducing an appropriate amount of turbulence into
the laminar sublayer. In all these analyses, except those in

references 1 and 3, the properties were constant and the
flow fully developed. The relations among heat transfer,

mass transfer, and fluid friction are discussed in reference 6.
The inadequacy of most of the previous analyses at high

Prandtl and Schmidt numbers is principally caused by the

expressions used for the eddy diffusivity in the region very
close to the wall. This region is important because of the

extremely large temperature or concentration gradients in

that region at high Prandtl or Schmidt numbers (ref. 7). In

the analysis given herein, which was made at the NACA
Lewis laboratory, the expression for eddy diffusivity given
in reference 1 is modified in order to account for the effect of

kinematic viscosity in reducing the turbulence in the region
close to the wall. The effects of variable viscosity and of

length-to-diameter ratio are also investigated.

BASIC EQUATIONS

For obtaining the velocity, temperature, and concentra-
tion distributions in a tube with turbulent flow, the differ-

ential equations for shear stress, heat transfer, and mas_
transfer can be written as follows (symbols are defined in the

appendix):

du + du
_=_ _ p -_ O)

dt dt

q:--k_y--pgc_ehd_
(2)

dC dU (3)
m: --k _ _ _hdy

where the values for e and eh are dependent on the amount

and kind of turbulent mixing at a point. The eddy diffu-
sivities for heat and mass transfer are equal inasmuch as both

processes are governed by the same differential equation if

aerodynamic heating is neglected (diffusion equation).
On the other hand, the ratio eh/E=a must be determined

experimentally or theoretically inasmuch as the equation of
motion for a fluid contains terms which are not present in

the diffusion equation. Equations (1) to (3) can be written
in dimensionless form as

__(_+ p e ) du +"ro--\m po _o dy +
(4)

_=(Foo l_+ p ±_ _ dr+Pro po C_ o a _+

m X
S_o +a _oo) dC+dy+ (6)

The variation of properties in these equations might be

caused by either radial variation of temperature or of con-
centration of the diffusing substance.

I Superse.qes NACA TN 3145, "Analysis of Turbulent Heat Transfer, _Iass Transfer, and Friction in Smooth Tubes at High Prandtl and Sehmidt Numbers," by Robert G. Deissler, 1954.
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EXPRESSIONS FOR EDDY DIFFUSIVITY

In order to make practical use of equations (4), (5), and

(6), the eddy diffusivity e must be evaluated for each portion
of the flow. After consideration of the various factors on

which _ might depend, the following functional relation is
assumed:

e=e(u,y,_, du d2u )@' 7i ' " " " (r)

(The quantities _ and p must occur together inasmuch as

they are the only quantities in eq. (7) containing mass as a

dimension.) It is assumed in reference 8 that in the region
at a distance from the wall e=e(du/dy, d2u/dy 2) (K_rm_n's

assumption), and in the region close to the wall e=e (u, y)=
n2uy. In both of these expressions the possible effect of

kinematic viscosity #/p is neglected. It appears fl'om heat-
and mass-transfer data at high Prandtl and Schmidt num-

bers, however, that the effec_ of _/p cannot be neglected in

the region very close to the wall (y+_5). When the pre-
vious expressions are used to compute heat and mass transfer

at high Prandtl and Schmidt numbers, the coefficients are

considerably too high compared with the expm'imental
values. It might be expected that, in the region very close to

the wall where the turbulence level is low, the effect of kine-
matic viscosity would be important inasmuch as the viscous

effects would be of the same order of magnitude as the inertia

effects. Therefore, for the region close to the wall, e is writ-
ten as

_= e(u,y, dp) (8)

As in reference 8, the effect of the derivatives is neglected

close to the wall because the flow is very nearly laminar in
that region. The first derivative approaches the value u/y

and hence may be omitted since u and y already appear in the

functional relation. The second derivative becomes very
nearly zero as the wall is approached.

From dimensional analysis, equation (8) becomes

_ _ _./n2uy\ ,_/ e' \
,,v,,t,77)-o ,, t (9)

The function Y[e'l(l_/p)] should approach 1 as e or e' increases,

because the effect of kinematic viscosity becomes negligible
at high turbulence levels. Inasmuch as dimensional analysis

cannot determine the form of the function F, additional
assumptions must be made.

The simplest assumption that might be made for F[e'/(#/p)]
is that it equals e'/(_/p). This assumption could be written
in differential form as

(<)df=d _ (10)

However, equation (10) could not be expected to hold as F

approaches 1, because the change in F for a given change in
d/(_/o) should approach 0 as F approaches 1 (F could never

be greater than 1). The simplest multiplieative factor which
gives equation (10) this characteristic is (l--F). '/'he

assumption made for the variation of F, the adequacy of
which will be checked by experiment, therefore becomes

dF= d[e'/(dp)l (1 i F) (ii)

Separating variables and integrating from the wall to a point
in the fluid give

f[ dF
l_Y - Oo \,/p/

(12)

where the lower limits are taken as zero, because the turbu-

lence goes to zero at the wall and the effect of kinematic

viscosity consequently becomes extremely large at the wall
(F-+O). Integration of equation (12) results in

e t

F=l--e sip (13)

This expression approaches 1 for large values of e'/(tz/p ).

From equations (9) and (13) there results

(14)

Equation (14) gives e as a function of u and y for the region
close to the wall. The constant n is to be determined

experimentally.

For the region at a distance from the wall, F is usually
close to 1, because the effect of kinematic viscosity is small.

The K_irm_in expression for e, which neglects the variation
of F, can usually be used in that region, or

(du/dy) _
_=,_2 (d2u/dy2) 2 (15)

If it is desired to take the variation of F into account in the

region at a distance from the wall, equation (15) becomes

F - "2(duidy)31(d2uldy2)2-']
(du/dy)a Ll-e .,,/,> _] (16)

_=_2 (d_u/dy_)2

No attempt is made in the present analysis to specify the

mechanism by which the kinematic viscosity reduces the
eddy diffusivity in the region close to the wall, because the
exact mechanism is unknown. Possible mechanisms are

these: First, the kinematic viscosity might act as a damping
factor to reduce the turbulence level close to the wall.

Second, it might help to orient the eddies close to the wall

by damping out those moving perpendicular to the wall and

thus reduce the effective turbulent transfer. Third, it might

act to produce a partial turbulence; that is, it might cause
_he flow at a point to be laminar a fraction of the time.

The actual effect of kinematic viscosity migh_ be due to any,
or all, of these mechanisms.

ANALYSIS FOR CONSTANT FLUID PROPERTIES

In order to solve equations (4), (5), and (6), the following
assumptions are made in addition to the assumptions con-

cerning the expressions for eddy diffusivity (eqs. (14), (15),
and (16)):

(1) The eddy diffusivities for momentum e and heat or

mass transfer eh are equal, or _ = 1. Previous analyses for

flow of gases in tubes based on this assumption yielded heat-

transfer coefficients that agree with experiment (ref. 1). At
low Peclet numbers (Pe = RePr), a appears to be a function
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of Peeler number (ref. 9) but is approximately 1 at high

1)eelet numbers. In general, the Peeler numbers are high

at high Prandtl numbers for turbulent flow.
(2) The variations across the tube or boundary layers of

shear stress r, the heat transfer per unit area q, and the mass

transfer per unit area m have a negligible effect on the

velocity, temperature, and concentration distributions. It
is shown in figure 12 of reference 1 that the assumption of a
linear v_riation of shear stress _nd heat transfer across the

boundary layers gives very nearly the same velocity and
temperature profiles for gases as those obtained by assuming
uniform shear stress and heat transfer across the boundary

layers for values of _h+ between 500 and 5000. (The bound-

ary layers fill the tube for fully developed flow or fully
developed heat or mass transfer.) For small values of _h+,

such as occur very near the entrance, the effect of variable
heat transfer (or mass transfer) is checked in figure 9 of

reference 10 and found to be negligible. Although these

checks were made for gases (Prandtl or Schmidt numbers
close to 1), the effect of variation of heat or mass transfer

per unit area at high Pr_ndtl or Schmidt numbers would be
even less because the temperature or concentration profile
becomes flatter as the Prandtl or Schmidt number is increased.

(3) The molecular shear-stress, he_t-transfer, and mass-
transfer terms in the equations can be neglected in the

region at a distance from the wall (ref. 1, fig. 14).
(4) In the case of mass transfer, the concentration of the

diffusing substance is small enough that the mass transfer
does not _ppreciably change the velocity. This condition

50
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is generally obtained in the case of evaporation from a
wetted walt or in the solution of the wall material in a liquid.

Velocity, temperature, and concentration distributions.--
The expression for e close to the wall (eq. (14)) can be
written in dimensionless form for constant properties as

e _n2u+y + (1 --e -n_u+È+) (17)
Pc/Pc

Equations (4), (5), and (6) can be written in integral form

for the region close to the wall with the preceding assump-
tions and constant fluid properties as

_0 y÷
u+= dY+ (18)

1+ n2u+y + (1 -- e-n_+v÷)

y+ dy+

t+----Ji pr_{_n2u+y+(l_e_n_+y÷ )
(19)

C,+=f0 _+ dy+
Sc-t-n2u + y+ (1 --e-_+_÷ )

(20)

For the region at a distance fl'om the wall, equation (15) is
substituted in equations (4), (5), and (6). By use of as-

sumptions (2) and (3), equation (4) becomes, for constant

fluid properties,

25

2O

l0 100

)' Po/(Po y

FIGU_tE 1.--Generalized velocity distribution for adiabatic turbulent flow.
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(Vertical line is dividing line between eqs.)
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which is the well-known logarithmic equation. Division

of equation (4) by equation (5) or (6) gives, with assump-
tions (1), (2) and (3),

U ÷-ul +-_ t +- tl ÷_ C +- C1 + (22)

where the equations are integrated from y,+, the lowest

value of y+ for which the equations for flow at a distance
from the wall apply, to y+.

The variation of u + with y+ for fully developed adiabatic
turbulent flow from references 8 and 11 is shown on semi-

logarithmic coordinates in figure 1. The curves correspond-

ing to equations (18) and (21) are also shown in the figure.
Equation (18) was solved by numerical iteration inasmuch

as u + occurs on both sides of the equation. The values of

the constants in the equations are n=0.124, K=0.36, and
y_+=26, as determined from the experimental data. These

values will apply also to the temperature distributions. The

value of n in equation (18) differs from that given in reference
8 because equation (18) includes the effect of kinematic vis-

cosity on e. Figure 1 indicates good agreement of equation
(18) with tile data for y+_ 26 and of equation (21) with the

data for y+_ 26. From the velocity-distribution data it is

difficult to tell whether e=nRuy from reference 8 or equation
(14) for e should be used in the region close to the wall,

inasmuch as both expressions give results which agree closely
with the data. The temperature or concentration profiles

at high Prandtl or Schmidt numbers are, however, much more

sensitive to the values of e very close to the wall because of
the very large temperature or concentration gradients in

that region, as can be seen in figure 2.
Generalized temperature or concentration distributions

calculated from equations (19), (20), and (22) are presented

in figure 2 on log-log coordinates. Each curve represents
either t+ or C + at a given Prandtl or Schmidt number, as can
be seen by comparison of equations (19) and (20). The

curves indicate that the temperature or concentration dis-
tributions become flatter over most of the tube radius as the

Prandtl or Schmidt number increases. From equations (19)

and (20), dt+/dy+=Pr and dC+/dy+=Sc at or very near the
wall so that the slopes of the curves at the wall increase with

Prandtl or Schmidt number. The slopes of the curves in

figure 2 near the wall appear equal because the curves are
plotted on log-log coordinates (d(log t+)/d(log y+)= 1 at the

wall). Included for comparison is the temperature dis-

tribution for a Prandtl number of 300 calculated by the
method in reference 1, which neglects the effect of kinematic
viscosity (e=nRuy).

The sensitivity of the temperature or concentration dis-
tribution at high Prandtl or Schmidt numbers to various

assumptions for the turbulent transfer in the region close
to the wall compared with that of the velocity distribution
indicates that the region very close to the wall could be

studied advantageously by measuring temperatures or con-
centrations at high Prandtl or Schmidt numbers rather than

by measuring velocities in that region. Sonic work along
these lines has been reported in reference 5, in which con-
ten,ration profiles a_ high Schmidt numbers were measured

with an interferometer. No evidence of a purely laminar
layer (linear concentration profile) was found for values of

y+ as low as 1. This result is in agreement with the assump-
tion in the present analysis, where the turbulence is assumed

to be zero only at the wall.

Relations among lgusselt, Reynolds, and Prandtl or
Schmidt numbers for constant properties.--It can be shown

from the definitions of the quantities involved that the

Nusselt numbers for heat and mass transfer and the Reyn-
olds number are given by

Nu -=2r°+Pr (23)
tb +

Nu, 2ro+ SC
Cb+ (24)

where

and

Re=2ub+ro + (25)

Q+=JI r°+ t+ u + (ro +--Y+ ) dY +

Ji _°+ u+(ro +_y+) dy +

Cb+=L _°+ C+u + (ro+--y+) dy +

_o+u+ (to +-y+) dy +

(26)

(27)

P0+
% --(r0+)2 jo u + (ro+--y +) dy + (28)

The Nusselt numbers in these equations are based on the

difference between wall and bulk temperatures or concentra-
tions. The relation among" Nusselt, Reynolds, and Prandtl

numbers can be obtained from these equations and the

generalized distributions given in figures 1 and 2 for various
values of the parameter r0+.

Predicted Nusselt numbers for fully developed heat or mass
transfer are plotted against Reynolds number for various
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FIGURE 2.--Generalized temperature or concentration distributions
for various Prandtl or Schmidt numbers.
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FIGURE 3.--Fully developed Nusselt numbers for heat or mass transfer

against Reynolds number for various Prandtl or Sehmidt numbers.

values of Prandtl or Scltmidt number in figure 3. The curve

for a Prandtl number of 0.73 agrees very closely with that

given in reference 1, which was obtained by using e=n2uy
in the region close to the wall. The curves for supereritieM

water at higher Prandtl numbers (Pr _ 6) given in references
12 (fig. 7) and 13 (fig. 18), however, are higher than those in

figure 3; therefore the curves in these references should be
replaced by figure 3, although the values of the reference

temperatures for evaluating the fluid properties should not

be significantly affected.
Examination of the curves in figure 3 indicates that the

slopes of the various curves are approximately equal on a

log-log plot. (The slopes would be more nearly equal if the
Peeler number effect from ref. 9 were included.) This result

justifies the usual practice in heat-transfer investigations of
writing Nu=f(Re, Pr) as f(Re)Xf(Pr) (usually as Reapp).
The same result does not hold for very low Prandtl numbers

where the slopes change considerably.

Comparison of analysis and experiment for fully developed
heat and mass transfer.--A comparison between predicted

and experimental results for fully developed heat and mass

transfer is presented in figure 4, in which Stanton number is

plotted against Prandtl or Sehmidt number for various Reyn-
olds numbers. The predicted Stanton numbers were ob-
tained from_ figure 3 and the relation St=:Nu/RePr. The

symbols represent mean lines through data for heat transfer
in gases (ref. 1) and in liquids (refs. 14 to 19) and mass
transfer by evaporation from wetted walls (refs. 20 to 22),

by solution of the wall material in a liquid (refs. 23 and 24),

and by diffusion-controlled electrodes (ref. 25). The pre-
dicted and measured values are in good agreement over the

entire range of Prandtl and Schmidt nmnbers shown (0.5
to 3000). The agreement for a Reynolds number of 10,000
in the low Prandtl or Schmidt number range would be im-

proved by applying the Peeler number correction from
reference 9.
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Simplified equation for fully developed case for very high
Prandtl or Schmidt numbers.--At very high Prandtl numbers

the essential temperature changes take place in the region
very close to the wall where u + is very nearly equal to y+.

Setting u+=y + in equation (19), expanding the exponential
function in a series, and retaining only the first two terms
of the series result in

t + = _+ dy +
3o

___Fnd(y+) 4 (29)

Integration of equation (29) and evaluation of the result
for y+ = co give

7r

t_+= _ n Pr 314 (3 0)

The value of t+ at y+= co is essentially tb+, because t+ is very
nearly constant except in the region very close to the wail at

high Prandtl numbers. From equations (23) and (30),

Nu =4V_ nro +Pr '/4 (31)
7r

or the Stanton nmnber, in terms of the Prandtl number and

friction factor, is

st_2 4]
7r pp/4 (32)

where

(33)

2
f=(u0+)_

Similarly, for mass transfer ,

St,__ 2n 4]
zr Sc sit

where n has the value 0.124 as determined in figure 1. The

relation between Re and.f is given in figure 8 of reference 1
or the curve in figure 10 in the present report for adiabatic

flow (fl=0). This relation is, of course, independent of
Prandtl number for constant properties. Equation (32) or

(33) is indicated by the dotted line in figure 4 and is seen
to be in good agreement with the predicted line obtained

previously for Pr_200.

Comparison of various analyses.--A comparison of various
analyses is given in figure 5. It can be seen that all the

analyses more or less converge at the lower Prandtl or
Schmidt numbers. At the high Prandtl or Schmidt num-

bers, the present analysis and the analyses from references
4 and 5 are in fair agreement, whereas those from references

2 and 3 diverge considerably. The present analysis and
the analysis from reference 5 represent the experimental
data about equally well.

Heat or mass transfer in entrance region for uniform wall

heat or mass flux, uniform initial temperature or concentra-
tion distribution, fully developed velocity distribution, and

constant properties.--For calculating heat or mass transfer

in the entrance region, it is assumed, as in reference 10, that
the effects of heat or mass transfer are confined to fluid

layers close to the surface (boundary layers for heat or mass
transfer). The temperature or concentration distributions

outside the boundary layers are assumed uniform, and the
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FIGURE 5.--Comparison of various analyses. Reynolds number, 10,000.

temperature or concentration is constant along the length
of the tube for the region outside the boundary layer.
Inside the boundary layer the temperature or concentration

distribution is obtained from figure 2. Integral heat- or

mass-transfer equations are used for calculating the thickness
of the boundary layers for various distances from the
entrance. It is shown in reference 10 that for heat transfer

the relation between _h+ and X/D for constant properties is
given by

X 1 F_ +
-- L hD 2 (r0+) _ (t_+--t+)u+(r°+--Y+)dY+ (34)

A similar equation can be written for mass transfer if the

concentration of the diffusing material is small (assmnption
4):

X__ ! l _,,+
D 2(r0+)2J0 (C_+--C+)u+(r°+--Y+)dY+ (35)

In equations (34) and (35), X represents the axial distance

from the point at which heat or mass transfer begins. The
dimensionless boundary-layer thickness _h+ is the same in

both equations when the Prandtl number equMs the Schmidt

number inasmuch as C+=t + for a given value of y+ and
Prandtl or Schmidt number.

Values of local Nusselt and Reynolds numbers can be ob-

tained from equations (23), (24), and (25), as for fully de-
veloped flow, with the exception that the expression for 6 +

in equation (26) is replaced by

['Ft÷u+(ro+--y+) dy + -t-t, +_o'_'u +(ro+--y +) dy +
tb+_ _,0 .,_h (36)

f0'°+u+(r0+--y+) dy+

A similar expression can be obtained for Cb+. The integral
in the numerator is broken into two parts, because t+ is con-

stant and equal to t_+ outside the thermal boundary layer.
Inside the thermal boundary layer the relation between t+
and y+ is obtained from figure 2. Values of u + are obtained

from figure 1 for y+ from O to r0+ inasmuch as a fully de-
veloped velocity distribution is assumed. The relation be-

tween Nusselt number and X/D for various values of Reyn-
olds number is obtained by assuming values of the parameters

r0+ and 8h+ and by calculating the various quantities from
equations (23), (25), (34), and (36).
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number. Uniform wall heat flux, uniform initial temperature distribution, and fully developed velo:eity distribution.

The variation of local Nusselt number for heat or mass
transfer divided by the fully developed Nusselt number with
X/D and Reynolds number at Prand tl or Schmidt numbers
between 1 and 3000 is given in figure 6. At the higher
Reynolds numbers the values of Nu/Nue for a given X/D
decrease with increasing Prandtl number; that is, the effect
of X/D becomes small at large values of Prandtl number.
At low Reynolds numbers the variation is more complex:
Values of Nu/Nua first decrease and then increase slightly
as Prandtl number increases. In either case it is evident

that in the entrance region the fully developed Nusselt
numbers should be multiplied by a factor which is a function

of X/D, Reynolds number, and Prandtl number rather than
of X/D alone. That is, a simple factor such as (X/D) -_,

which is often used for Prandtl numbers of approximately
1, is inadequate for high Prandtl numbers. The effect of
Reynolds number on Nusselt number in the entrance region
increases with Prandtl number; that is, the separation of
the curves for various Reynolds numbers increases. The
same conclusions apply to the average Nusselt numbers
plotted in figure 7 except that the changes with X/D near
the entrance are more gradual and the separation of the
curves with Reynolds number is greater than for the local
values.

The average Nusselt numbers were calculated from

Nu X/D
.o--- fx,_ d_(-X/D)

Jo Nu
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This equation is consistent with the definition

_: (to--tb)dX
(to--tb)_- X

which is the usual way of defining the average difference
between wall and bulk temperatures for uniform heat flux.

It is of interest to note that the Nusselt numbers for

turbulent flow in figures 6 and 7, in general, display trends

opposite to those for Nusselt nmnbers for laminar flow with

increasing values of Prandtl number. In the case of laminar
flow, the value of Nu/Nue at a given X/D and Reynolds
number increases considerably with Prandtl number (ref. 26,

fig. 3), because the heat diffuses through the fluid In ore
slowly at the higher Prandfl numbers (the thermal diffusivity
is lower) so that the thermal boundary layer is thinner and

Nu/Nue for a given X/D near the entrance and a given

Reynolds number is consequently higher than for the lower
Prandtl numbers. The same phenomenon also tends to

increase the effect of X/D for turbulent heat transfer. In
the case of turbulent heat transfer, however, the shape of

the temperature profile in the thermal boundary layer

changes considerably with Prandtl nmnber and becomes very
flat at high Prandtl numbers (fig. 2). This means that the

temperature profiles for fully developed flow do not differ

greatly from those near the entrance (both arc flat) although
the boundary-layer thickness for the two cases differs

considerably. The Nusselt numbers in the entrance region
for turbulent heat transfer at high Prandtl numbers therefore

tend to quicldy approach the fully developed values.

FULLY DEVELOPED HEAT TRANSFER AND FRICTION WITH

VARIABLE PROPERTIES

Turbulent heat transfer to liquids with variable viscosity.-

In the case of heat transfer to liquids, the variation of the

viscosity with temperature is considerably greater than the
variation of the other properties. A good approximation to
the actual heat transfer in liquids can therefore be obtained

by considering only the viscosity to vary with temperature.

Under that assumption and assumptions 1 and 2 from the
section ANALYSIS FOR CONSTANT FLUID PROPER-

TIES, equations (4) and (5) become

and

1 _ _ du+

/ 1 e \dr +

l=(j:> ro+ olpo) _ff (38)

For variable viscosity, the expression for _ close to the wall

(eq. (14)) can be written in dimensionless form as

__2_+y+ (1 --e
n2_+y÷\

) (39)

For liquids, including water, oil, ethylene glycol, and sodimn

hydroxide, #/#0 can usually be represented by (t/to) e, if the
liquid is not too near the freezing point. The exponent d
varies from --1 to --4, and the temperatures are measured

in °F. This differs from the case for gases where the tem-

peratures were measured m °R (ref. 1). All the results up
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Equations (41) and (42) can be solved simultaneously by
iteration, that is, assumed values for u +, y+, and t+ are
substituted into the right side of the equations and new

values of u + and t+ are calculated by nmnerical integration.
These new values are then substituted into the right side oi

the equations and the process is repeated until the values oi
u + and t+ corresponding to each value of y+ do not change

appreciably. Equations (41) and (42) give the relations
between u +, t+, and y+ for various values of file heat-transfeJ:

parameter f_ and of Pro for the region close to the wall.
In the region at a distance from the wall, the terms in the

equations containing variable viscosity are neglected so that

u + and t+ are given by equations (21) and (22).

_0 y+

t+=_ dY +
d n2u+y+

(42)

and

to this point are independent of whether the temperatures
are in °R or °F. From the definitions of t + and ¢7,

,/_0= (1--_t+y (40)

Substituting equations (39) and (40) into equations (37)
and (38) and writing the result in integral form yield

q/,+ _--- F v+ (/y+ (41)
/ \J0

(1--flt+)d+n2u+y + t 1 --(3 (1-et+) _)

(b) Velocity distribution.

FIGURE K--Generalized distribution for liquid with variable viscosity.

Fully developed flow; Prandtl number, 10; tU_0= (t/to)-q (Vertical

line is dividing line between eqs.)
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for various

values of Prandtl number and heat-transfer parameter for liquids

with variable viscosity. Fully developed flow; #/_0= (t/to) -4.

Generalized temperature and velocity distributions for a
Prandtl number at the _all of 10 and a d of --4 are shown

for various values of the heat-transfer parameter _ in figure
8. The value of y+ at the intersection of the curves for
flow close to and at a distance from the wall is taken as

y_+=26, as in the case of constant viscosity. The effect of
various assumptions for the variation of y_+ is investigated
in reference 13 (fig. 13), in which it is concluded that this

assumption should give accurate results. Positive values of

¢l correspond to heat addition to the liquid, negative values

to heat extraction. The values of t+ at a given value of y+
increase with increasing fl, whereas the values of u + decrease.

These opposite trends can be explained by examining the
terms in the denominators of equations (4]) and (42).

The first term in the denominator of equation (41) (molecu-
lar) causes u + to decrease with increasing values of/_ (d_0),
whereas the second term (turbulent) causes u + to increase.
The effect of the second term is somewhat smaller so that

the net effect is a decrease, as shown in figure 8(b). In

equation (42), however, the first term is independent of /S
and therefore the second term causes an increase in t+ with

increasing values of ft. The opposite trends for heat transfer

and friction in most of the succeeding curves can be attributed
to the same cause.

The effect of the factor in parenthesis in equation (42),
which is equal to F in equation (13), increases with increase

in Prandtl number because of the steep temperature gradients
at high Prandtl numbers in the region very close to the wall

where F differs considerably from 1. The separation of the
t+ curves for various values of /3 (not shown) therefore

increases as l_randtl number increases, the separation for a
t_randtl number of 1 being very small.

For obtaining the relation between Nusselt number,

Reynolds number, Prandtl number, and fl'iction factor for

variable viscosity, equations (23), (25), and (26) apply for
variable properties as well as for constant properties if the

ADVISORY COMMITTEE FOR AERONAUTICS
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t_m_JR_ 10.--Friction factors against Reynolds numbers for various

values of heat-transfer parameter for liquids with variable viscosity.

l%lly developed flow; Prandtl number, 10; _/#0= (t/to) -4.

viscosities in the Reynolds and Prandtl numbers are evalu-

ated at the wall temperature. The friction factor f can be
calculated from

_=2/(u_+)_ (43)

Nusselt numbers and friction factors are plotted against

Reynolds numbers in figures 9 and 10, respectively, with the
viscosity in the Reynolds and Prandtl numbers evaluated at

the wall temperature. The curves for cooling and heating

are for values of _b/p0 on the order of 0.5 and 2, respectively.
As in the case of temperature and velocity distributions,
the trends with increasing values of/_ for the Nusselt numbers

and friction factors are opposite. Also, as in the case of the

temperature distributions, the separation of the Nusselt
number curves with /_ increases as the Prandtl number in-

creases, the separation being very small for a Prandtl number

of 1. Thus, for a Prandtl number of 1 the reference temper-
ature for evaluating the viscosity in order to eliminate the

effects of variable viscosity is close to the wall temperature;
the departure of the reference temperature from the wall
temperature increases with Prandtl number. This is to be

expected because, as mentioned previously in this section,
the separation of the t+ against y+ curves with ¢/ increases

with Prandtl number. In those curves all the properties
are evaluated at the wall temperature.

The reference temperature for heat transfer in liquid with
variable viscosity for a Prandtl number of 1 differs from that

obtained for gases in reference 1, in which all the properties
except the specific heat were considered variable. In refer-

ence 1, the reference temperature for gases was found to be

close to the average of the w_ll and bulk temperatures rather
than close to the wall temperature. In assigning a reference

temperature, it is therefore important to consider what prop-
erties are variable.

Values of x for calculating the reference temperature t_,

where t_-=X(to--t_)q-tb, are given for heat transfer and friction
in figure 11. The curves for/_=0 in figures 3 and 10 can be

used for variable viscosity if the viscosities in the Reynolds

and Prandfl numbers are evaluated at the reference tempera-
tures given in figure 11 (Re_ and Pr,). The values of • were

computed for values of d (/_//_0= (t/to) a) of -- 1 and --4 and for
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evaluating viscosity in Prandtl and Reynolds numbers in figures 3

and 10 for liquids with variable viscosity. #/#o=(t/to) -I or (t/to)-4;

#b/u0,-_0.5 or 2.

values of #b/_0 of about 0.5 and 2. The value of d had little

effect on the curves, but different curves are obtained for

heating and cooling of the liquid. In the case of heat trans-
fer, the reference temperature does not depart greatly from

that in the widely used Colburn equation (ref. 27), wherein
the viscosity is evaluated at t0.5 except at the lower Prandtl
numbers. The values of x for friction are lower than those

for heat transfer. Deviations from the curves in figure 11

might occur for very high viscosity ratios or for cases in
which the viscosity variation with temperature could not be

represented by a simple power function.
Turbulent heat transfer to gases with variable properties

using present method of analysis.--If the present method of

analysis is to be considered more general than the analysis in
reference 1, it must be applicable to gases with variable

properties as well as to liquids. When assumptions (1) and

(2) in the section ANALYSIS FOR CONSTANT FLUID
PROPERTIES are used, equations (4) and (5) become,

for gases,

l__( #._F p e ) du + (44)\#o oo _o/poo dy +
and

\ 0 0 (45)

where cp is assumed constant because its variation with

temperature is slight compared with the variations of vis-

cosity, thermal conductivity, and density. As in reference 1,
it is assumed that k/ko=p/po=(t/to) _ and p/po_--to/t, where

d=0.68 and the temperatures are measured in degrees
Rankine. By substituting the expression for e close to the

wall (eq. (14)) and t/to=l--flt +, equations (44) and (45) can
be written in integral form for the region close to the wall as

U+=Sv+ dY i n'_+_ \ (46)
+'a" '_2'U"+ Y + (1-_+')(1--/3t) -t-i_-_ _ 1--e

t+=_o _+ dY i _.+_ \ (47)(1--/_t+)_Pr0F_T4n2u+Y+ 1--e (_+1)

Equations (46) and (47) can be solved simultaneously by

iteration as were equations (41) and (42).

In the region at a distance from the waft, the molecular
shear-stress and heat-transfer terms in equations (44) and

(45) are neglected and the expression for e given in equation

(15) is used. The integration is carried out in reference 1,
in which it is found that

__2_ _/l_fl(U+__bl+_Ftl+ )yl+e ¢ E_ _/1--fl(u+--ul+ @tl+) + 1

y+ = (48)2K

and

t+ = tl + -[- u +- ul + (49 )

where y_+ = 26.
Generalized temperature and velocity distributions as cal-

culated by the present analysis for a Prandtl number of 0.73

are plotted in figure 12. The distributions calculated in
reference 1 are also included for comparison. The agree-
ment between the two methods of analysis is satisfactory,

so that the Nusselt numbers and the reference temperatures

obtained from the present analysis should also agree with

those given in reference 1.
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Laminar heat transfer to liquids with variable viscosity

and uniform heat flux.--Laminar heat transfer to liquid
metals with variable viscosity is investigated in reference 28.

The results of that investigation should be applicable also to
liquids with high Prandtl numbers if the value of d is on the

order of --1.0. The temperatures in the report are to be

measured in °F (u//x0=(t/t0)d). It is found (ref. 28) that the
results for fully developed laminar flow with constant heat

flux can be represented closely by

- (5o)
\#o/

SUMMARY OF RESULTS

The following results were obtained from tile analytical
investigation of heat and mass transfer in smooth tubes at

high Prandtl and Schmidt numbers:
1. By modifying the expression for eddy diffusivity from a

previous analysis to account for the effect of kinematic vis-

cosity in the region close to the wall, good agreement was
obtained between predicted and experimental results for heat
and mass transfer at Prandt] and Schmidt numbers between

0.5 and 3000. A simplified equation was obtained for very

high Prandtl or Schmidt numbers.
2. The analysis indicated that, except at low Reynolds

numbers, the entrance effect (local Nusselt number divided

by fully developed Nusselt number) for heat or mass transfer
decreases as Prandtl or Schmidt number increases.

3. The analysis indicated that the effects of variable vis-
cosity on turbulent heat transfer and friction in liquids can

be nearly eliminated in ordinary cases by evaluating the

viscosities in the Reynolds and Prandtl numbers at reference
temperatures which are functions of the Prandtl number.

For the laminar case the results for liquid metals with vari-

able viscosity given in a previous analysis should be appli-
cable to liquids at high Prandtl numbers.

4. When the present method of analysis was applied to
gases with variable properties, essentially the same results

were obtained as are reported from analysis and experiments

in a previous report.

LEWIS FLIGHT PROPULSION LABORATORY

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

CLEVELAND, OHIO, February 17, 1954

APPENDIX

SYMBOLS

The following symbols are used in this report:

C concentration of diffusing substance, (lb) (sec2)/ft _
Cb bulk concentration of diffusing substance

(lb) (sec2)/ft 4
C_ concentration of diffusing substance at y=8,

(lb) (see_)/ft _

Co concentration of diffusing substance at wall,
(lb) (secS)/ft 4

c exponent

c_ specific heat of fluid at constant pressure, Btu/
(lb)( ° F)

%o specific heat of fluid at constant pressure at wall,
Btu/(lb) (o F)

D inside diameter of tube, ft
d exponent, value of which depends on variation of

viscosity of fluid with temperature

F function of e/(_/p)
g conversion constant, 32.2 ft/sec 2

h local heat-transfer coefficient, ffo/to--G Btu/
(see) (sq ft) (o F)

h' local mass-transfer coefficient, mo/(Co--Cb), ft/see

h_, average heat-transfer coefficient, qo/(to--tb)_

h_,' average mass-transfer coefficient, mo/(Co--Cb)_,
k thermal conductivity of fluid, Btu/(sec) (sq ft)

(o F/ft)
ko thermal conductivity of fluid evaluated at to,

Btu/(see) (sq ft) (o F/ft)
m rate of mass transfer toward tube center per unit

area, (lb) (sec)/cu ft
m0 rate of mass transfer toward tube center per unit

area at wall, (lb) (sec)/eu ft
n constant

q

q0

r0

t

tb

tz

t_

to

(to-- tb)av

U

q_b

X

x

Y
G
E

Ep

_h

K

k

rate of heat transfer toward tube center per unit

area, Btu/(sec) (sq ft)
rate of heat transfer at inside wall toward tube

center per unit area, Btu/(see) (sq ft)
inside tube radius, ft

temperature, ° F for liquids or ° R for gases

bulk static temperature of fluid at cross section of

tube, o F
reference temperature for local Reynolds and

Prandtl numbers, X(to--tb)-_tb, ° F

temperature of fluid outside thermal boundary

layer, ° F
wall temperature, ° F for liquids or ° R for gases

average difference between wall and bulk tem-

perature, ° F
time-average velocity parallel to axis of tube,

ft/see
bulk velocity at cross section of tube, It/see

distance from point at which heat or mass transfer

begins, ft
number used in evaluating arbitrary temperature

in tube t_

distance from wall, ft

thermal or diffusion boundary-layer thickness, ft

coefficient of eddy diffusivity for momentum, sq
ft/sec

expression for eddy diffusivity which neglects
effect of u/p, sq ft/see

coefficient of eddy diffusivity for heat or mass,

sq ft/sec
Kfirm_n constant

molecular diffusivity, sq ft/sec
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Xo molecular diffusivity at wall, sq ft/sec
absolute viscosity of fluid, (lb) (sec)/sq ft

_ absolute viscosity of fluid evaluated at t_, (lb)

(sec)/sq ft
_x absolute Viscosity of fluid evaluated at tx, (lb)

(see)/sq ft
_o absolute viscosity of fluid evaluated at to, (lb)

(see)/sq ft

p mass density of fluid, (lb) (see 2)/ft4
p0 mass density of fluid evaluated at to, (lb)(sec2)/ft 4

r shear stress in fluid, lb/sq ft
r0 shear stress in fluid at wall, lb/sq ft

Dimensionless groups:

(Co- c) po
C+ concentration parameter,

m0

(Co-C ) 4 po
Cb+ bulk concentration parameter,

m0

6_ + value of C + at _h +, (Co--Ca)_/_o/po
?n0

G + value of C + at yl +
f friction factor, 2To�pUb 2

Nu Nusselt number for heat transfer, hD/k
Nu' Nusselt number for mass transfer, h'D/X

N'u_ average Nusselt number for heat transfer, h_D/lc

Nv,_' average Nusselt number for mass transfer, hdD/X
Nue fully developed Nusselt number for heat transfer

Nu,/ fully developed Nusselt number for mass transfer
Pe Peeler number, pubDc_g//c

Pr Prandtl number, c_g_/k
Pro Prandtl number with properties evaluated at to

Re

Rex

Reo

re q-

Sc

See
St

St'

t+

lb +

%+

qz1 +

y+

y_+

OL

5
8h +

Reynolds number, pubD/t_
Reynolds number with viscosity evaluated at

t_, pubD/#x

Reynolds numbm" with viscosity evaluated at

to, pu_D/#o

tube radius parameter, _To/po ro
#o/po

Schmidt number, _/(pX)
Schmidt number at wall, _0/p0X0
Stanton number for heat transfer, h/pgu_,c_,

Stanton number for mass transfer, h'/ub

(to--t)c_gro l--t/to

temperature parameter, qo_/_o/po fl

1
bulk-temperature parameter, _ \ to/

\ to/

value of t+ at yi +

velocity parameter, u/_/ro_o

bulk-velocity parameter, ub/r_o

value of u + at y,+

4 0/p0
wall distance parameter, _ y

value of y+ at intersection of curves for flow close
to wall and at a distance from wall

ratio of eddy diffusivities, eJe

heat-transfer parameter, qo_/r_oo/(c_groto)

dimensionless thermal or diffusion boundary-

 / 0/00
layer thickness, _ _h
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